Activation of respiratory muscles does not occur during cold-submergence in bullfrogs, Lithobates catesbeianus.
نویسندگان
چکیده
Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus, retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering.
منابع مشابه
Control of lung ventilation following overwintering conditions in bullfrogs, Lithobates catesbeianus.
Ranid frogs in northern latitudes survive winter at cold temperatures in aquatic habitats often completely covered by ice. Cold-submerged frogs survive aerobically for several months relying exclusively on cutaneous gas exchange while maintaining temperature-specific acid-base balance. Depending on the overwintering hibernaculum, frogs in northern latitudes could spend several months without ac...
متن کاملTemperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.
The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase C...
متن کاملIntroduced bullfrogs are associated with increased Batrachochytrium dendrobatidis prevalence and reduced occurrence of Korean treefrogs
Bullfrogs, Lithobates catesbeianus, have been described as major vectors of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). Bd is widespread throughout the range of amphibians yet varies considerably within and among populations in prevalence and host impact. In our study, the presence of L. catesbeianus is correlated with a 2.5 increase in Bd prevalence in treefrogs, and the...
متن کاملActivation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs.
Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK....
متن کاملEfficacy of potential chemical control compounds for removing invasive American bullfrogs (Rana catesbeiana)
Invasive American bullfrogs [Rana catesbeiana (Lithobates catesbeianus)] are outcompeting and predating on native biota and contributing to reductions in biodiversity worldwide. Current methods for controlling American bullfrogs are incapable of stopping their expansion, thus more cost-effective and broadly applicable methods are needed. Although chemical control compounds have been identified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 220 Pt 7 شماره
صفحات -
تاریخ انتشار 2017